CLASS XII GUESS PAPER MATHEMATICS

Time: 3 hrs
M. M.: 100

Instructions: (i) All questions are compulsory.
(ii) The question paper consists of 26 questions divided into three sections A, B and C. Section A comprises of 6 questions of 1 mark each, Section B comprises of 13 questions of 4 marks each, Section C comprises of 7 questions of 6 marks each.
(iii) There is no overall choice. However, internal choices have been provided in 4 questions of 4 marks each and 2 questions of six mark each.

SECTION 'A'

1. Find a unit vector in the direction of $\overline{A B}$, where $\mathrm{A}(1,2,3)$ and $\mathrm{B}(4,5,6)$ are the given points.
2. Let $\overline{\mathrm{a}}=2 \mathrm{i}+3 \mathrm{j}+2 \mathrm{k}$ and $\bar{b}=\mathrm{i}+2 \mathrm{j}+\mathrm{k}$, find the projection of $\overline{\mathrm{a}}$ on $\overline{\mathrm{b}}$.
3. Find the Cartesian equation of the line which passes through the points $(3,-2,-5)$ and $(3,-2,6)$.
4. Construct a 2×3 matrix whose elements are given by $\mathrm{a}_{\mathrm{ij}}=\frac{1}{2}|5 i-3 j|$
5. Form a differential equation for $x^{2}+(y-b)^{2}=1$, where b is an arbitrary constant.
6. If m and n are the order and degree, respectively of the differential equation $y \cdot\left(y_{1}\right)^{3}+x^{3} \cdot\left(y_{2}\right)^{2}-x \cdot y=\sin x$, then write the value of $m+n$.

SECTION 'B'

7. To raise money for an orphanage, students of three schools A, B and C organized an exhibition in their locality, where they sold paper bags, scrap-books and pastel sheets made by them using recycled paper, at the rate of Rs. 20, Rs. 15 and Rs. 5 per unit respectively. School A sold 25 paperbags 12 scrap-books and 34 pastel sheets. School B sold 22 paper-bags, 15 scrapbooks and 28 pastel-sheets while school C sold 26 paper-bags, 18 scrap-books and 36 pastel sheets. Using matrices, find the total amount raised by each school. By such exhibition, which values are inculcated in the students?
8. If $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$ then prove that $A^{n}=\left[\begin{array}{cc}1+2 n & -4 n \\ n & 1-2 n\end{array}\right]$ for all $\mathrm{n} \in \mathrm{N}$.

OR

cbse Fguess	CBSEGuess.com

Using elementary row transformation, find the inverse of $\mathrm{A}=\left[\begin{array}{ccc}3 & -1 & -2 \\ 2 & 0 & -1 \\ 3 & -5 & 0\end{array}\right]$.
9. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ is positive and unequal. Show that the value of determinant $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ is negative.
10. Evaluate: $\int_{2}^{5}(|x-1|+|x-4|) \mathrm{dx}$
11. Evaluate: $\int\left[\log (\log \mathrm{x})+\frac{1}{(\log \mathrm{x})^{2}}\right] \mathrm{dx}$

OR

Evaluate: $\int(x+1) \sqrt{1-x-x^{2}} d x$
12. In a factory which manufactures bolts, machines A, B and C manufacture respectively $25 \%, 35 \%$ and 40% of the bolts. Of their outputs $5 \%, 4 \%$ and 2% are respectively defective bolts .A bolt is drawn at random from the output and is found to be defective. What is the probability that it is manufacture by machine B .

OR
A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.
13. Let $\overline{\mathrm{a}}=\mathrm{i}-\mathrm{j}, \overline{\mathrm{b}}=3 \mathrm{j}-\mathrm{k}$ and $\overline{\mathrm{c}}=7 \mathrm{i}-\mathrm{k}$. Find a vector \bar{d} such that it is perpendicular to both $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}} . \overline{\mathrm{d}}=1$.
14. Find the image of the point $(2,3,-4)$ in the plane $\bar{r} .(2 \mathrm{i}-\mathrm{j}+\mathrm{k})=3$.

OR
Find the distance between the point $\mathrm{P}(6,5,9)$ and the plane determined by the points $\mathrm{A}(3,-1,2)$, B $(5,2,4)$ and $C(-1,-1,6)$.
15. Prove that: $\cot ^{-1}\left(\frac{\mathbf{a b}+\mathbf{1}}{\mathbf{a}-\mathbf{b}}\right)+\cot ^{-1}\left(\frac{\mathbf{c b}+\mathbf{1}}{\mathbf{b}-\mathbf{c}}\right)+\cot ^{-1}\left(\frac{\mathbf{a c}+\mathbf{1}}{\mathbf{c}-\mathbf{a}}\right)=2 \pi$, if a $<b<c$

Solve $\tan ^{-1} \frac{x-1}{x+1}+\tan ^{-1} \frac{2 x-1}{2 x+1}=\tan ^{-1} \frac{23}{36}$.
16. If $x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$, find $d^{2} y / d x^{2}$.
17. If $y=x^{x}-2 \sin x$, then find $d y / d x$.
18. State and verify Lagrange's mean value (LMV) theorem $f(x)=x^{3}-2 x^{2}-x+3$ on $[0,1]$.
19. Evaluate: $\int \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} d x$.

SECTION 'C'

20. Let $\mathrm{f}: \mathrm{W} \rightarrow \mathrm{W}$ is defined as $\mathrm{f}(\mathrm{n})=\mathrm{n}-1$, if n is odd and $\mathrm{f}(\mathrm{n})=\mathrm{n}+1$, if n is even. Show that f is invertible. Find the inverse of f.

OR
Consider the function $\mathrm{f}: \mathrm{R}_{+} \rightarrow[4, \infty)$ defined by $f(x)=x^{2}+4$, where R_{+}is the set of all non negative real numbers, show that f is invertible. Also, find the inverse of f.
21. Using integration, find the area of enclosed figure by

$\left\{(\mathrm{x}, \mathrm{y}): 0 \leq y \geq \mathrm{x}^{2}+1 ; 0 \leq y \geq \mathrm{x}+1 ; 0 \leq x \geq 2\right\}$.
22. Solve the differential equation: $2 y . e^{x / y} d x+\left(y-2 x . e^{x / y}\right) d y=0$.

OR
Solve the differential equation: $(x-\sin y) y^{\prime}+\tan y=0 ; y(0)=0$
23. Find the shortest distance between the lines whose vector equations are $\bar{r}=(1-\mathrm{t}) \mathrm{i}+(\mathrm{t}-2) \mathrm{j}+(3-2 \mathrm{t}) \mathrm{k}$ and $\bar{r}=(\mathrm{s}+1) \mathrm{i}+(2 \mathrm{~s}-1) \mathrm{j}-(2 \mathrm{~s}+1) \mathrm{k}$. And also find its equation.
24.40% students of a college reside in hostel and the remaining resides outside. At the end of year, 50% of the hosteliers got A grade while from outside students, only 30% got A grade in the examination. At the end of year, a student of the college was chosen at random and was found to get A grade. What is the probability that the selected student was a hostelier?
25. An open box with a square base is to be made out of a given card board of area c^{2} sq. units. Show that the maximum volume of the box is $\frac{c^{3}}{6 \sqrt{3}}$ cubic units.
26. David wants to invest at most Rs. 12000 in bonds A and B. According to the rule, he has to invest at least Rs. 2000 in bond A and at least Rs. 4000 in bond B. If the rates of interest on bond A and B are 8% and 10% per annum respectively. Formulate the LPP and solve it graphically for maximum interest. Also, determine the maximum interest received in a year. Why investment is important for future life?

